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A quantum mechanical model requiring only strong quantum interaction for a 
charged particle gas estimates the superconducting transition temperature for 
wide-ranging states of matter. A general equation is derived which estimates the 
critical temperature T c the energy gap, and the coherence length for the classical 
metallic superconductors, heavy-electron superconductors, the perovskites, 
metallic hydrogen, and neutron stars. Estimates for Tc, the coherence length, 
and the energy gap which are model independent for coupling mechanisms agree 
well with accepted values for these materials. Estimates are made for three- 
dimensional quasi-two- and quasi-one-dimensional states. 

1. THREE-DIMENSIONAL Q UANTUM GAS 

With the discovery of  higher temperature superconductivity at 35 K in 
the perovskites (Bednorz and Muller, 1986) and the increase of  the critical 
temperature Tc to 125 K and possibly higher (Wu et al., 1987; Huang et al., 

1987; Sheng and Hermann,  1988), there is uncertainty regarding electron 
pairing mechanisms, strengths, dimensionality of  the superconductivity, and 
expected limits for critical temperatures. Thus, insight may be gained by 
means of  a quantum mechanical  charged gas model that is essentially 
independent of  any assumed coupling mechanisms and coupling strengths. 
The first objective of  this paper  is to derive an upper  limit for Tr for different 
classes of  superconducting materials in different dimensionalities. The 
second object is to derive an approximate coupling strength, i.e., the energy 
gap and hence also the coherence length for these classes. 

In a Bose gas, particles should start a Bose-Einstein condensation into 
a ground state in momentum space when the quantum mechanical 
wavelength is much greater than the interparticle spacing (one-fourth the 
de Broglie wavelength is the approximation here), i.e., at To. For a degenerate 
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system of Fermi particles (electrons or protons here) superconductivity can 
exist if the particles pair near the Fermi energy level. When this happens, 
the paired particles will have integral spin (singlet state of zero spin for 
electrons, although the triplet state of spin one can also participate) and 
obey Bose-Einstein statistics rather than Fermi-Dirac statistics. This can 
lead to the appearance of superconductivity, just as the pairing of 3He 
atoms in the triplet state leads to superfluidity. 

Thus, the only requirement we shall impose is that for strong quantum 
effects, the quantum mechanical wavelength ~ is long compared with the 
interparticle spacing of the particle pairs. This occurs when there is a 
multiple occupancy of energy levels, as in a Bose gas. At temperature T-< T~ 
we have as a necessary (but not sufficient) condition 

where 

�88 ~ r/s 1/3 (1) 

kT~ 

ns is the number density of particle pairs which can have an effective 
interaction for condensation because they have energies within kTc of the 
Fermi surface. EF is the Fermi energy, k is the Boltzmann constant, and n 
is the number density of  free particles (assumed to be fermions 
above To). 

Since we are interested in general results related to classes of materials, 
we will neglect detailed structure related to a specific material. Thus, for 
the Fermi energy of a three-dimensional conductor, we use the standard 
result for a three-dimensional box of infinite potential outside the box and 
zero potential inside, 

2m\g~r/h2{3n'~2/3 = G h 2 ( 3 )  2/3 h2 E F = T I 7  | n2/3 ...~_ _ _  /,/2/3 (3) 
8m 

where m is the mass of  the unpaired charge carrier. (In a solid m may be 
different than for a free particle. Except for the heavy-electron metals, the 
mass of a free electron and the mass of a free proton will be used here in 
the calculation of To.) 

For a particle pair gas of momentum p, mass 2m, and incremental 
energy E abov~ the Fermi energy, relating the minimum de Broglie 
wavelength to Tc 

h h h 
'~min -- -- (4) p [2(2re)E] ~/2-[4m(�89 
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w h e r e f i s  the number of  degrees of  freedom per particle. (The mean thermal 
wavelength of  the pair is shorter than by A a factor of  [f/2~]1/2.) F o r  a 
particle pair in three dimensions, there are three translational degrees of  
freedom for the center of  mass. (Combining equations (1) and (4) leads to 
an interparticle spacing which is 4fl/e/(2.612)1/3(27r)1/2= 1.16f 1/2 smaller 
than for a condensed ideal monatomic Bose gas of  mass 2m in three 
dimensions. So later when f is set equal to 1, these spacings differ by only 
16% in the quasi-one dimensional case which is the one of greatest interest.) 

Combining equations (1)-(4), we find 

h2n 2/3 E F h6D2 F 

Tc ~ 8faro k - 64f3 k - 213 r2( fm )ak (5) 

where DF is the density of  states at the Fermi surface. 
Let us estimate n for various materials, to determine the estimated Tc 

as given by equation (5). For the classical metallic superconductors, the 
number density of  conduction electrons is ~1029/m 3. This is of the same 
order as the number density of  atoms. So, for a three-dimensional classical 
superconductor equation (5) estimates To3--54.3-50 K. This is in good 
agreement for these materials with the highest known transition temperature 
of 23.2 K for Nb3Ge. 

For the heavy-electron metals (Fisk et al., 1986), the Hall coefficient 
is of  the same order as for the classical metallic superconductors. This 
implies that the number density of conduction electrons is roughly the same, 
-v1029/m3. The mass varies from about 10 to 100 times greater than the 
mass of  a free electron. Thus, the estimate from equation (5) is that 
Tc3 ~"~0.5--5 K. The experimental values are between 0.5 and 1.5 K (Fisk 
et al., 1988). So again there is good agreement between the experimental 
data and equation (5). 

The generality of equation (5) permits us to make estimates for states 
of  matter that do not occur on the earth. Let us look at metallic hydrogen 
and neutron stars. To estimate the number density of free electrons for 
metallic hydrogen, we assume one free electron per atom and that the 
center-to-center spacing between atoms is equal to two Bohr radii, 2ao. 
Thus, 

n ---' (2a0) -3 = [2(5.3 • 10-11m] -3 = 8.4 • 1029-103~ 3 (6) 

For three-dimensional metallic hydrogen, equation (5) gives To3 = 300 K as 
an upper limit. This is in good agreement with results calculated in the 
literature (Jaffe and Ashcroft, 1983; Overhauser, 1987) of 120-260 K. 

Ginzburg (1969) reports that neutron stars have densities of 1013- 
1015 g/cm 3. In the case of neutron stars, the supercurrents are thought to 
be due to coherent circulation of proton pairs. The given mass density gives 
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an upper limit of 1043-1045 protons/m 3. Equation (5) yields To3 = 108-109 K. 
This is in good agreement with the literature value (Ginzburg and Kirzhnits, 
1965) of 101~ K when one considers the complexity of the detailed 
calculations and the uncertainties in the many parameters that are used. 

2. QUASI-LOWER-DIMENSIONAL SYSTEMS 

In order to estimate Tc for the ceramic oxides, we must also consider 
two- and one-dimensional cases, as there is a possibility that in some of 
them, such as Y1Ba2Cu3OT-y, the superconductivity may be two or even 
one dimensional in nature. These oxide systems are strictly not of lower 
dimensionality, as mechanisms such as Josephson tunneling through non- 
conducting regions and pair tunneling into and through normal-conducting 
regions tend to produce in equilibrium a Fermi energy corresponding to 
three dimensions EF rather than to two- or one-dimensional Fermi energies 
EF2 or  E~I. Anisotropy may produce a sufficiently higher effective mass in 
some directions as to effectively reduce the dimensionality. ! envisage these 
systems to be of quasi-lower dimensionality where only the degrees of 
freedom of the paired fermions f2 and fl are restricted, respectively, to two 
and one  dimension in their nontunneling conduction paths, hence the 
designation here of quasi-two or quasi-one dimensionality. 

For a quasi-two-dimensional system, the effective two-dimensional 
number density of interacting pairs is 

( rc )2,3 
ns2 ---- (ns3) 2/3 = \EF  n (7) 

Thus 

( kTc n ~ -1/3 
A = 4n~1/2 = 4\'ff~- F / (8) 

In a quasi-one-dimensional system, the effective one-dimensional number 
density of interacting pairs is 

nsl = ( ns3)l/3= ( n kTc ~ 1/3 
E~/  (9) 

Thus 

4(  n kTc~-l/3 
A=gn~-~= \ "~-F] (10) 

Equations (8) and (10) for A are the same as the combination of equations 
(1) and (2). Thus we obtain equation (5) for the three-, quasi-two-, and 
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quasi-one-dimensional cases, where f represents the degrees of freedom for 
the fermion pairs in the given dimensions, i.e., f3 = 3, f2 -- 2, and fl  = 1. 

We can now estimate Tc for the ceramic oxides. Here n is less than 
for the metallics, with n ~ 1028/m 3 as a representative number. The estimates 
from equation (5) are T c 3 - 1 0 K ,  T c 2 - 4 0 K ,  Tc~-300K,  for three, two, 
and one dimensions, respectively. The agreement with experiment (Wu 
et al., 1987; Huang et al., 1987; Sheng and Hermann, 1988) is reasonable 
if one may assume that the primary conduction mechanism in the perovskites 
is two- or one-dimensional along the copper oxide planes or chains. Conduc- 
tion along the c axis may occur by Josephson tunneling between copper- 
oxide planes or chains. 

If three-dimensional superconductivity is assumed for LiTiO4 with 
Tc = 13.7 K (Johnston et al., 1973) and BaPbx_xBixO3 with T~ = 13 K (Sleight 
et al., 1975), the agreement with equation (5) is good. If two-dimensional 
superconductivity is assumed for the original Bednorz and Muller Ba-La-Cu- 
O system, with T~--35 K, the agreement is good. If  the YlBa2Cu307_y is 
assumed to be a quasi-one and quasi-two dimensional superconductor, its 
established T~ = 94 K and reports of T~ ~ 200 K are in accord with equation 
(5) (Wu et al., 1987; Huang, et al., 1987). The TI-Ca-Ba-Cu-O system has 
a Tc = 120-125 K (Sheng and Hermann, 1988) and the potential for reduced 
ac power loss (Rabinowitz, 1987). For a combination of linear and planar 
structure in which the interchain interactions are equal to the intrachain 
interactions , then T~ =(Tca Tc2) 1/2= (300 K x 40 K) 1/2= 110 K. 

Overhauser (1987) has speculated that lithium beryllium hydride com- 
pounds, if metallic may be high-temperature superconductors. He points 
out a similarity with metallic hydrogen and notes that whereas Pd is not a 
superconductor, PdH has a Tc-~ 10 K. He observes that the LiBeria and 
Li2BeH4 have a modified perovskite structure. For the latter he calculates 
the conduction electron density n =4.71 x 1023/cm3 =4.71 x 1029/m 3. No 
estimates of  Tc are presented. For m equal to the free electron mass, equation 
(5) predicts Tc3 ~ 200 K, Tc2  ~ 500 K, T c l  ~ 4000 K. These high values indi- 
cate that systems like this may indeed be promising areas to investigate. 

Table I summarizes the results for various states of matter (material) 
and the dimensionality of the superconductor. 

3. ENERGY GAP 

Let us see what constraint must be placed on the Bose-Einstein gas to 
meet the requirement of an energy gap, since most superconductors, includ- 
ing the new high-temperature ceramic oxide superconductors, have an 
energy gap. If  the Bose gas were an ideal gas, with no potential energy of 
interaction of the particles, then the condensed phase might not be expected 
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to exhibit superfluidity, as the smallest infinitesimal energy input would 
excite it. It appears that this increased kinetic energy would dissipate as 
heat, resulting in viscosity for an ideal neutral Bose gas or resistance for 
an ideal charged noninteracting Bose gas, and the critical velocity would 
be zero. 

For any real neutral or charged gas, there is an interaction potential 
energy between the particles which can result in an energy gap. The particles 
exhibit no flow viscosity when kT<energy gap, because this minimum 
energy must be supplied before they can leave the states they are in. One 
might think that in the limit as the interaction goes to zero, the energy gap 
may be expected to go to zero and frictionless flow to cease. However, the 
existence of  "gapless superconductivity" is an indication that in addition 
to the energy gap, the existence of  strong correlation of the pair wave 
function plays an important role in all superconductors. The addition of 
magnetic impurities, magnetic field, etc., can lower the energy gap more 
rapidly than T~. Instead of there being an energy gap in which there is a 
total absence of states, "gapless superconductivity" merely has an extremely 
low density of  states in the gap region. 

However, without assuming any particular coupling mechanism or 
coupling strength, let us introduce a minimum excitation energy or binding 
energy A per particle which is needed to break up a particle pair. The energy 
gap is designated as 2A here to be in accord with the BCS gap. In our 
formalism, let us first introduce A into equation (4), modifying it thus 

A [2(2m)(lfkT_A)],/2 (11) 

Here (lfkTc- A) represents the translational energy of the particle pair, so 
that the number of degrees of  freedom must be increased from the three 
translational ones (in three-dimensions) to include the vibrational and 
rotational degrees of freedom related to A. Heuristically, with an additional 
energy �89 for the vibrational potential energy (or possibly other than �89 
since the potential energy here is not necessarily a quadratic function of  
position and the statistics are other than Boltzmann), and 3 (�89 associated 
with the kinetic energies of vibration and rotation it would be tempting to 
set 

A = 2kT~ (12) 

which is similar to the original BCS (Bardeen, Cooper, and Schrietter 1957) 
result 

ABcs = 1.76kTc (13) 
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However, we may go beyond the heuristic result of A = 2kTc. Combining 
equations (11), (1), (2), and (3) we find 

2A =fkTc -](kTc)E/aE~ 3 =fkT~ -~(hkT~)E/3n2/9m-~/3 (14) 

where the first term is like the BCS result. Equation (14) predicts that T~ 
may be >0  for A=0,  whereas equation (13) yields T, = 0  for ABcs=0. In 
fact, equation (14) reduces to equation (5) for gapless superconductivity. 
Experimental values rather than equation (5) should be used as input to 
equation (14). At most f3 = 3 translational + 2 vibrational + 2 rotational -- 7 
degrees of freedom in three-dimensions. As before, equation (14) is also 
obtained for quasi-two and quasi-one dimensions where at most f2 = 2 
translational+ 2 vibrational+ 1 rotational = 5 degrees of freedom in two- 
dimensions, and fl  -- 1 translational + 2 vibrational = 3 degrees of  freedom 
in one dimension. Depending on temperature, some of the degrees of 
freedom may not be excited. Let us use f3 -- 5, f2 = 4, and f l  = 3 at this time 
for the 2A column of Table 1. Since equation (14) involves the difference 
between two terms which may be close in value, let us derive an alternate 
equation which avoids this as well as questions about the additional degrees 
of freedom. 

Rather than introducing A into equation (4), let us consider equation 
(2). Twice the number of particle pairs is roughly the fraction 1A/E F of 
conduction electrons that have a strong interaction near the Fermi level. 
This fraction may be a function of the class of superconductors as the 
number of  states expelled from the gap is related to the size of the gap and 
the density of  normal states. Thus, in place of  equation (2), we have 

2 n s ~ - - n  (15) E~ 

Now combining equations (15), (1), (3), and (4) we obtain 

2A = 8(4fkT~)a/2EF l/a = 128(2m)1/2(fkTc)3/2h-ln-X/3 (16) 

As before, equation (16) is obtained for quasi-two and quasi-one 
dimensions. Here f represents only the translational degrees of freedom, 
where f 3=3 ,  f2=2, and f i  = 1. (If  equations (11), (15), (1) and (3) are 
combined, a cubic equation in A is obtained.) Similarly, a cubic equation 
in T~ results when A is included as in equation (11). 

Table I shows the results of equations (14) and (16) in comparison 
with the original BCS result, equation (13). Although only one significant 
figure may be warranted, two are listed for the purposes of comparing A 
and A'. This simple theory predicts energy gaps ranging over nine orders 
of magnitude, in fair agreement with BCS from the smallest of tenths of 
an meV for the heavy Fermion metals to tenths of an MeV for neutron 
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stars. It gives a better representation than BCS for the ceramic oxides. When 
T~ from equation (5) is used, 2A/kTc = 8. Using experimental values of  T~ 
in equation (16) causes this ratio to vary. The values of A and A' are 
reasonably self-consistent. Furthermore, since the coherence length= 
hVF/~A, this theory also yields approximately correct coherence lengths 
over this range. 

A mass of fifty electron masses (50me) was used as the representative 
mass for the heavy Fermion metals with T~3 = 1 K, T~2 = 4 K, Tel = 20 K. A 
mass of 4me was used for the ceramic oxides. Except for the ceramic oxides, 
ABcs was computed only for the three dimensional cases. Wherever possible, 
the energy gaps were computed using the experimental values, To. 

For Table 1, equation (16) is considered independent of  equation (5) 
and only experimental values of Tr should be input. If  we combine equations 
(5) and (16) then 

2A = 8kTc (17) 

in good agreement with the ceramic oxides. 

4. CONCLUSIONS 

Table I illustrates that equation (5) does well in representing experi- 
mental and calculated results over a range for Tc of nine orders of magnitude. 
It is indicative of the Tc that may be expected for a given class of  materials 
in a given conduction dimensionality. The experimental and literature data 
are presented in support of  the estimates calculated from equation (5). In 
addition to crystallographic evidence, the agreement of  equation (5) with 
a wide variety of states of  matter is indicative that the ceramic oxides are 
quasi-one-dimensional (Q1) and quasi-two-dimensional (Q2) for the higher 
To. Because of  the low number density of electrons, equation (5) indicates 
that they are not likely to be three-dimensional superconductors except at 
the lower transition temperatures. 

What is interesting is that this simple equation does so well with only 
three variables, f n, and rn, which can be determined from experiment. The 
variation of  m from that of  a free electron mass may be able to account 
for small differences in T~ within a given class of  materials, as would more 
detailed knowledge of  the Fermi surface in general. The mass variation 
appears to work well for the heavy electron metals, where T~oc 1/m, as 
predicted by equation (5). Crystallographic information can help yield the 
f that applies for a given dimensionality. The combination of different 
dimensions, such as Q1 and Q2 in the ceramic oxides, may be an important 
factor in determining T~. 
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What has been shown here is that consideration of the Bose-Einstein 
condensation as a general feature common to superconductivity for a broad 
range of states of matter may be equal to the importance of the diversity 
of mechanisms responsible for the energy gap. It is noteworthy that without 
specifying a coupling mechanism or coupling strength, this simplified gen- 
eral theory does well in predicting coherence lengths transition temperatures 
and coupling strengths over nine orders of magnitude (1 K to 10 9 K and 
meV to MeV) from the heavy electron metals to neutron stars. 
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